Step of Proof: wellfounded_functionality_wrt_implies
9,38
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
wellfounded
functionality
wrt
implies
:
1.
T1
: Type
2.
T2
: Type
3.
r1
:
T1
T1
4.
r2
:
T2
T2
5.
T1
=
T2
6.
x
,
y
:
T1
.
r1
(
x
,
y
)
r2
(
x
,
y
)
7.
P
:(
T1
). (
j
:
T1
. (
k
:
T1
.
r1
(
k
,
j
)
P
(
k
))
P
(
j
))
{
n
:
T1
.
P
(
n
)}
8.
P
:
T2
9.
j
:
T2
. (
k
:
T2
.
r2
(
k
,
j
)
P
(
k
))
P
(
j
)
n
:
T1
.
P
(
n
)
latex
by ((((BackThruHyp 7)
CollapseTHEN (Thin 7))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
7.
P
:
T2
C1:
8.
j
:
T2
. (
k
:
T2
.
r2
(
k
,
j
)
P
(
k
))
P
(
j
)
C1:
9.
j
:
T1
C1:
10.
k
:
T1
.
r1
(
k
,
j
)
P
(
k
)
C1:
P
(
j
)
C
.
Definitions
t
T
,
x
.
t
(
x
)
,
x
(
s
)
,
P
Q
,
x
(
s1
,
s2
)
,
x
:
A
.
B
(
x
)
,
,
{
T
}
origin